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ABSTRACT

Let S be a set of n sites 
hosen independently from a uniform distribution in

a 
ube in 3�dimensional Eu
lidean spa
e. In this paper, an expe
ted O(n)

algorithm for 
onstru
ting the Voronoi diagram for S together with numeri
al

results obtained from an implementation of the algorithm are presented.

1. INTRODUCTION

Consider a set S = fp

1

; : : : ; p

n

g of n points (to be 
alled sites in the following)

in the Eu
lidean spa
e E

3

, and let d(�; �) denote the Eu
lidean distan
e. The

Voronoi diagram for S is a sequen
e V (p

1

), : : : , V (p

n

) of 
onvex polyhedra


overing E

3

, where for ea
h i, i = 1; : : : ; n, V (p

i

), the Voronoi polyhedron of

p

i

relative to S, is de�ned by

V (p

i

) � \

n

j=1;j 6=i

fp 2 E

3

: d(p; p

i

) � d(p; p

j

)g:

The Voronoi diagram has played an important role in 
omputational geometry

for a long time, and several algorithms have been devised and implemented

for 
onstru
ting it in two and higher dimensions (see Bentley, Weide and Yao

(1980), Bowyer (1981), Brostow, Dussault and Fox (1978), Brown (1979),

Dwyer (1988), Finney (1979), Green and Sibson (1978), Lee and S
ha
hter

(1980), Maus (1984), Ohya, Iri and Murota (1984), Seidel (1986), Shamos

(1978), Shamos and Hoey (1975), Tanemura, Ogawa and Ogita (1983), Watson

(1981), Witzgall (1973)).

Assume the sites in S have been 
hosen independently from a uniform dis-

tribution in a 3�dimensional 
ube. In this paper we present an expe
ted O(n)
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algorithm for 
onstru
ting the Voronoi diagram for S that is a 
onsequen
e of

proofs and results in the 
ompanion paper Bernal (1990). Numeri
al results

obtained from a Fortran implementation of the algorithm are also presented.

2. TERMINOLOGY

Let S = fp

1

; : : : ; p

n

g be a set of n sites in E

3


hosen independently from a

uniform distribution in a 
ube R. With m de�ned as the 
oor of n

1=3

, i. e. the

largest integer less than or equal to n

1=3

, assume as in Bentley, et al. (1980)

that R has been divided into m

3

equal-sized 
ells. Given a site q, de�ne the

1

st

layer of 
ells that surrounds q as the 
olle
tion of 
ells that 
ontain q.

Indu
tively, given k � 1, assume that the k

th

layer of 
ells that surrounds q

has been de�ned. De�ne the (k + 1)

th

layer of 
ells that surrounds q as the


olle
tion, possibly empty, of 
ells that have one or more points in 
ommon

with 
ells in the k

th

layer, and that do not belong to the �rst k layers.

Let l
ell and v
ell represent, respe
tively, the length and volume of ea
h


ell.

Given numbers 
, 


0

, 


00

, 0 < 
 � 


0

, 


00

� 1, de�ne LG(n) and LG

0

(n) as the


oors of 
 � logn and 


0

� logn, respe
tively, and assume n is large enough so

that LG(n) > 2 and 2

3=2

� 


00

� LG

0

(n) � 2

�1

� n

1=3

.

Let

^

k denote the largest integer k for whi
h

2

k=2

� 


00

� LG

0

(n) � 2

�1

� n

1=3

:

It follows from the assumptions on n that

^

k � 3.

Set LG

0

(n) equal to LG(n), and LG

k

(n) equal to LG

0

(n) for ea
h k,

k = 1; : : : ;

^

k � 2.

Let f

i

, i = 1; : : : ; 6, represent the fa
ets of R, and let � denote [

6

i=1

f

i

, i. e.

the boundary of R.

Given a point x in E

3

and a 
losed subsetW of E

3

, de�ne dist(x;W ) as the

minimum value of jjx�wjj for w inW , where jj�jj represents the 3�dimensional

Eu
lidean norm.
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From the assumptions on n, several nonempty subsets of R 
an be de�ned

as follows:

R

�1

� fx 2 R : dist(x;�) � l
ell � LG(n)g:

R

0

� fx 2 R : l
ell � 2 � dist(x;�) < l
ell � LG(n)g:

R

^

k

� fx 2 R : dist(x;�) < l
ell � 2

�

^

k+2

g:

For ea
h k, k = 1; : : : ;

^

k � 1,

R

k

� fx 2 R : l
ell � 2

�k+1

� dist(x;�) < l
ell � 2

�k+2

g:

For ea
h i, k, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2,

R

i

k

� fx 2 R

k

: dist(x; f

j

) � l
ell � 2

k=2

� 


00

� LG

k

(n); j = 1; : : : ; 6; j 6= ig:

It follows from these de�nitions that the sets R

k

, k = �1; : : : ;

^

k, are pair-wise

disjoint nested regions of the 
ube R, and

R = [

^

k

k=�1

R

k

:

The signi�
an
e of these regions for our purposes 
an be summarized as fol-

lows. R

�1

is essentially that region of the 
ube R obtained by subtra
ting the

outermost LG(n) layers of 
ells of R from R. From Bentley, et al. (1980), the

Voronoi polyhedron of a site in R

�1


an be 
onstru
ted in expe
ted 
onstant

time. R

0

is essentially that region of R obtained by subtra
ting from the outer-

most LG(n) layers of 
ells of R the outermost two layers. R

k

, k = 1; : : : ;

^

k, are

regions of R whose union is essentially that region of R 
omposed of the out-

ermost two layers of 
ells of R, and whose thi
knesses 
orrespond to the terms

of the geometri
 series expanded to the �rst

^

k � 1 terms together with the re-

mainder. R

i

k

, i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, are subsets of R

k

, k = 0; : : : ;

^

k � 2,

respe
tively, de�ned in su
h a way that as intimated in Bernal (1990), due to

their positions relative to the boundary of R and the geometri
 series aspe
t of

R

k

, k = 1; : : : ;

^

k � 2, for a properly sele
ted value of 


00

the Voronoi polyhedra

of sites in these regions 
an be 
onstru
ted in expe
ted linear time. They are

also de�ned in su
h a way that due to the de�nitions of

^

k, R

^

k�1

and R

^

k

, and

the geometri
 series aspe
t of R

k

, k = 1; : : : ;

^

k, the expe
ted number of sites

in [

^

k

k=0

R

k

n [

6

i=1

[

^

k�2

k=0

R

i

k

is small enough that the Voronoi polyhedra of these

sites 
an also be 
onstru
ted in expe
ted linear time even under the worst

possible 
ir
umstan
es.

Given a site q in R

�1

, let v, v

0

, v

00

and v

000

be verti
es of R for whi
h

v

0

� v, v

00

� v and v

000

� v are all perpendi
ular to one another, and for ea
h j,

j = 0; : : : ; 8, and ea
h m, m = 0; : : : ; 4, de�ne a point r

jm

by

r

jm

� q + ((v

0

� v) � 
os(j�=4) + (v

00

� v) � sin(j�=4)) � sin(m�=4)

+ (v

000

� v) � 
os(m�=4):
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In addition, for ea
h j, j = 1; : : : ; 8, and ea
h m, m = 1; : : : ; 4, let U

jm

be

the 
one that is the 
onvex hull of the rays q~r

j�1;m�1

, q~r

j;m�1

, q~r

j�1;m

, and

q~r

jm

, and if within the �rst LG(n) layers of 
ells that surround q, for ea
h

j, j = 1; : : : ; 8, and ea
h m, m = 1; : : : ; 4, there exists a site s

jm

, s

jm

6= q,

su
h that s

jm

belongs to U

jm

, say that q is 
losed and that s

jm

, j = 1; : : : ; 8,

m = 1; : : : ; 4, render q 
losed. As shown in Bentley, et al. (1980), the Voronoi

polyhedron of a 
losed site 
an be 
onstru
ted in expe
ted 
onstant time.

For ea
h fa
et f of R, let H(f) represent the plane that 
ontains f , and

for ea
h site q, let T

f

(q) represent the point in f that is the perpendi
ular

proje
tion of q onto f .

Given i, k, 1 � i � 6, 0 � k �

^

k� 2, and a site q in R

i

k

, let v, v

0

and v

00

be

verti
es of R in f

i

for whi
h v

0

� v is perpendi
ular to v

00

� v, and for ea
h j,

j = 0; : : : ; 8, de�ne a point t

j

in H(f

i

) by

t

j

� T

f

i

(q) + (v

0

� v) � 
os(j�=4) + (v

00

� v) � sin(j�=4):

In addition, for ea
h j, j = 1; : : : ; 8, let O

j

be the o
tant in H(f

i

) that is

the 
onvex hull of the rays T

f

i

(q)

~

t

j�1

and T

f

i

(q)

~

t

j

, and if within the �rst

2

k=2

� LG

k

(n) layers of 
ells that surround q, for ea
h j, j = 1; : : : ; 8, there

exists a site q

j

su
h that dist(q

j

; f

i

) < l
ell � 2

�k

and the ray q~q

j

interse
ts O

j

,

say that q is o
tant-
losed and that q

j

, j = 1; : : : ; 8, render q o
tant-
losed.

Given i, k, q, v, v

0

, v

00

as above, let v

000

be a vertex of R for whi
h v

000

� v is

perpendi
ular to v

0

� v and v

00

� v, and for ea
h j, j = 0; : : : ; 8, and ea
h m,

m = 2; 3, de�ne a point r

jm

by

r

jm

� q + ((v

0

� v) � 
os(j�=4) + (v

00

� v) � sin(j�=4)) � sin(m�=4)

+ (v

000

� v) � 
os(m�=4):

In addition, for ea
h j, j = 1; : : : ; 8, let U

j

be the 
one that is the 
onvex hull

of the rays q~r

j�1;2

, q~r

j2

, q~r

j�1;3

, and q~r

j3

, and if within the �rst 2

k=2

� LG

k

(n)

layers of 
ells that surround q, for ea
h j, j = 1; : : : ; 8, there exists a site s

j

,

s

j

6= q, su
h that s

j

belongs to U

j

, say that q is 
one-semi
losed and that s

j

,

j = 1; : : : ; 8, render q 
one-semi
losed.

Given q as above, say that q is semi
losed if it is o
tant-
losed and 
one-

semi
losed. As intimated in Bernal (1990), for a properly sele
ted value of




00

the 
onstru
tion of Voronoi polyhedra of semi
losed sites is of expe
ted


omplexity a

eptable for our purposes.
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Finally, given sites p and q, say that p is a Voronoi neighbor of q relative

to S if V (p) and V (q) have a fa
et in 
ommon.

3. THE ALGORITHM

In this se
tion we present the algorithm in the form of a pro
edure 
alled

VORNOI. The algorithm and its expe
ted 
omplexity follow from proofs and

results in the 
ompanion paper Bernal (1990).

Essentially, the algorithm 
onsists of three steps. Let n, S, R, R

�1

, R

i

k

,

i = 1; : : : ; 6, k = 0; : : : ;

^

k � 2, be as de�ned in the previous se
tion. In the

�rst step, the Voronoi polyhedra of sites in R

�1

are 
onstru
ted as suggested

in Bentley, et al. (1980). Given a site in R

�1

, a geometri
al pro
edure is

available for 
onstru
ting in expe
ted 
onstant time the Voronoi polyhedron

of the site. Thus, the �rst step of the algorithm has expe
ted linear 
om-

plexity. In the se
ond step, the Voronoi polyhedra of sites in R

i

k

, i = 1; : : : ; 6,

k = 0; : : : ;

^

k � 2, are 
onstru
ted as intimated in Bernal (1990). Given a site

in [

6

i=1

[

^

k�2

k=0

R

i

k

, a geometri
al pro
edure that generalizes the one used in the

�rst step is available for obtaining a subset of S that 
ontains all of the Voronoi

neighbors relative to S of the site. This is done in su
h a way that as implied in

Bernal (1990), the expe
ted time involved in obtaining all su
h subsets for all

su
h sites is bounded above by O(n

2=3

� (logn)

4

)). Thus, sin
e an O(k � log k)

pro
edure is also available for 
omputing the interse
tion of k half-spa
es in

3�dimensional spa
e (see Preparata and Muller (1979)), a 
omputation 
an

be 
arried out that shows that the se
ond step of the algorithm has at most

expe
ted O(n

2=3

� (logn)

5

) 
omplexity. Finally, in the third step, the Voronoi

polyhedra of sites in R n (([

6

i=1

[

^

k�2

k=0

R

i

k

) [R

�1

) are 
onstru
ted. As shown in

Bernal (1990), a pro
edure is available for obtaining for ea
h site in this region

a subset of S that 
ontains all of the Voronoi neighbors relative to S of the

site. This is done in su
h a way that as implied in Bernal (1990), the expe
ted

time involved in obtaining all su
h subsets for all su
h sites is bounded above

by O(n

2=3

� (logn)

4

). Thus, sin
e the O(k � log k) pro
edure used in the se
ond

step for 
omputing the interse
tion of k half-spa
es is also available in this

step, it 
an be shown in a manner similar to the one used for the se
ond step

that the third step of the algorithm has also at most expe
ted O(n

2=3

� (logn)

5

)


omplexity. Therefore, the entire algorithm has expe
ted linear 
omplexity.

In the following we list and des
ribe, in the order of their �rst appearan
e

in pro
edure VORNOI, fun
tions and pro
edures used as primitives in that

pro
edure.

FLOOR(x): For a positive real number x 
omputes the largest integer less

than or equal to x.
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PRTION(R;R

0

; m; P ): Creates a partition of a 
ube R into m

3

equal-sized


ells, and then redu
es it to those 
ells that interse
t a region R

0

of R. P will


ontain the data stru
ture that des
ribes the redu
ed partition.

CEASGN(S; P; A): Using data stru
ture in P obtained from PRTION pro
e-

dure, assigns ea
h site in a set S to a 
ell that 
ontains the site in the partition

asso
iated with P , and for ea
h 
ell in the partition 
reates a list of those sites

assigned to the 
ell. The 
orresponding data stru
ture will be 
ontained in A.

RGASGN(S;R

0

; S

0

; n

0

; B

0

): Lo
ates and orders those sites in a set S that are


ontained in a region R

0

. S

0

will be the set of ordered sites, n

0

will be the

number of sites in S

0

, and for ea
h h, h = 1; : : : ; n

0

, B

0

(h) will be the h

th

site

in S

0

.

CLTEST(P;A; q;LG(n); f lag; Q): Using data stru
tures in P and A obtained

from pro
edures PRTION and CEASGN, tests whether a site q (assumed to

be in R

�1

) is 
losed. The test 
onsists of sear
hing at most the �rst LG(n)

layers of 
ells that surround q in the partition asso
iated with P and A for sites

s

jm

, j = 1; : : : ; 8, m = 1; : : : ; 4, assigned to 
ells in these layers that render q


losed. As soon as q is found to be 
losed flag is set equal to 1 and sites s

jm

,

j = 1; : : : ; 8, m = 1; : : : ; 4, that render q 
losed are pla
ed in Q. Otherwise

after LG(n) layers have been sear
hed and q has not been found to be 
losed

flag is set equal to zero.

POLYHD(q; Q; V ): Given a set Q of sites and a site q, 
onstru
ts the Voronoi

polyhedron V of q relative to Q [ fqg through an O(k � log k) worst-
ase al-

gorithm for 
onstru
ting the interse
tion of k half-spa
es (see e. g. Preparata

and Muller (1979)).

BNDIST(q; V; d): Computes the maximum distan
e d, possibly in�nite, from

a site q to the boundary of a polyhedron V .

SEARCH(P;A; q; d; Q): Using data stru
tures in P and A obtained from

PRTION and CEASGN pro
edures, given a site q sear
hes layers of 
ells that

surround q in the partition asso
iated with P and A for sites assigned to 
ells

in these layers within a distan
e d from q. Q will 
ontain the sites found during

this sear
h.

VNEISV(V; q; S;N): Given a site q in a set S and a polyhedron V su
h that

V is the Voronoi polyhedron of q relative to S, identi�es from V those sites
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in S that are Voronoi neighbors relative to S of q. On input N will 
ontain

for ea
h site in S a list, possibly empty, of known Voronoi neighbors relative

to S of the site obtained from previous exe
utions of VNEISV. During the

exe
ution of VNEISV, N will be updated so that on output for ea
h site that

is a Voronoi neighbor relative to S of q, q will appear in the list of known

Voronoi neighbors relative to S of the site.

VNEIGT(q; S;N;Q

0

): Given a site q in a set S, and N as des
ribed for

VNEISV, produ
es from N a set Q

0

that will 
ontain the known Voronoi

neighbors relative to S of q, if any, sin
e the last exe
ution of VNEISV.

SCTEST(P;A; q;LG

k

(n); H(f

i

); f lag; Q

00

; Q

000

): Using data stru
tures in P and

A obtained from pro
edures PRTION and CEASGN, tests whether a site q

(assumed to be in R

i

k

) is semi
losed. The test 
onsists of sear
hing at most the

�rst LG

k

(n) layers of 
ells that surround q in the partition asso
iated with P

and A for sites q

j

, s

j

, j = 1; : : : ; 8, assigned to 
ells in these layers that render

q o
tant-
losed and 
one-semi
losed, respe
tively. As soon as q is found to

be semi
losed flag is set equal to 1, sites s

j

, j = 1; : : : ; 8, that render q 
one-

semi
losed are pla
ed in Q

00

, and points q

0

j

, j = 1; : : : ; 8, are pla
ed in Q

000

,

where for ea
h j, j = 1; : : : ; 8, q

0

j

is the interse
tion of q~q

j

and H(f

i

), where

q

j

, j = 1; : : : ; 8, are sites that render q o
tant-
losed. Otherwise after LG

k

(n)

layers have been sear
hed and q has not been found to be semi
losed flag is

set equal to zero.

HALFSP(q;H; C): For a site q and a plane H, q 62 H, 
omputes the 
losed

half-spa
e C that 
ontains q and that is determined by the plane parallel to

H that 
ontains (T (q) + q)=2, where T (q) is the point in H that is the per-

pendi
ular proje
tion of q onto H.

MAXDST(q; Q

000

; d

00

): Given a site q, and a �nite set of points Q

000

, 
omputes

the maximum distan
e d

00

between q and the points in Q

000

.

MAXVAL(d

0

; d

00

): Computes the maximum of two numbers d

0

and d

00

.

The outline of VORNOI follows. Here T is the output variable. For ea
h

h, h = 1; : : : ; n, if in some ordering of S, q

h

is the h

th

site in S then T (q

h

)

will be the Voronoi polyhedron of q

h

relative to S. All other arguments a
t as

input variables and are as de�ned in the previous se
tion.

pro
edure VORNOI(S;R; n;

^

k;LG(n);LG

0

(n); : : : ;LG

^

k�2

(n);

R

�1

; H(f

1

); : : : ; H(f

6

); R

1

0

; : : : ; R

6

0

; : : : ; R

1

^

k�2

; : : : ; R

6

^

k�2

; T )
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begin

m := FLOOR(n

1=3

);

PRTION(R;R;m; P );

CEASGN(S; P; A);

RGASGN(S;R

�1

; S

�1

; n

�1

; B

�1

);

for h := 1 until n

�1

do

begin

q

h

:= B

�1

(h)

CLTEST(P;A; q

h

;LG(n); f lag; Q);

if (flag = 1) then

begin

POLYHD(q

h

; Q; V );

BNDIST(q

h

; V; d);

d := 2 � d;

SEARCH(P;A; q

h

; d; Q)

end

else Q := S n fq

h

g

POLYHD(q

h

; Q; V );

VNEISV(V; q

h

; S; N);

T (q

h

) := V

end

S

0

:= S n S

�1

;

R

0

:= R nR

�1

;

for k := 0 until

^

k � 2 do

begin

m := FLOOR(2

�k=2

� n

1=3

);

PRTION(R;R

0

; m; P );

CEASGN(S

0

; P; A);

for i := 1 until 6 do

begin

RGASGN(S

0

; R

i

k

; S

i

k

; n

i

k

; B

i

k

);

for h := 1 until n

i

k

do

begin

q

h

:= B

i

k

(h);

VNEIGT(q

h

; S; N;Q

0

);

SCTEST(P;A; q

h

;LG

k

(n); H(f

i

); f lag; Q

00

; Q

000

);

if (flag = 1) then

begin

Q := Q

0

[Q

00

;

POLYHD(q

h

; Q; V );

HALFSP(q

h

; H(f

i

); C);

V := V \ C;
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BNDIST(q

h

; V; d

0

);

d

0

:= 2 � d

0

;

MAXDST(q

h

; Q

000

; d

00

);

d

00

:=

p

2 � d

00

;

d := MAXVAL(d

0

; d

00

);

SEARCH(P;A; q

h

; d; Q);

Q := Q [Q

0

end

else Q := (S

0

[Q

0

) n fq

h

g

POLYHD(q

h

; Q; V );

VNEISV(V; q

h

; S; N);

T (q

h

) := V

end

end

S

0

:= S

0

n [

6

i=1

S

i

k

end

R

0

= R

0

n [

6

i=1

[

^

k�2

k=0

R

i

k

;

RGASGN(S

0

; R

0

; S

0

; n

0

; B

0

);

for h := 1 until n

0

do

begin

q

h

:= B

0

(h);

VNEIGT(q

h

; S; N;Q

0

);

Q := (S

0

[Q

0

) n fq

h

g;

POLYHD(q

h

; Q; V );

VNEISV(V; q

h

; S; N);

T (q

h

) := V

end

end

4. NUMERICAL RESULTS

A Fortran implementation of the algorithm has been developed on a Con-

trol Data Cyber 205 at the National Institute of Standards and Te
hnology.

Table 1 shows the 
omputing time per site in CPU se
onds for the imple-

mentation when applied to eight randomly generated sets in a 
ube for 30

values of n. Table 2 shows the number of 0�dimensional fa
es per site of the

Voronoi diagrams that were obtained with the implementation for the same

sets and values of n. We note that the numeri
al results in Table 1 and Ta-

ble 2 seem to 
on�rm our theoreti
al results. We note with interest from

the results in Table 2 that the expe
ted number of 0�dimensional fa
es per

site of a 3�dimensional Voronoi diagram seems to be in
reasing very slowly

as n in
reases but appears to be bounded above by the expe
ted number of

9



0�dimensional fa
es per site of a 3�dimensional Poisson-Voronoi tessellation

(approximately 6.768) (see Miles (1970)). Finally, we note that in the im-

plementation of the algorithm the 
onstants 
, 


0

, 


00

used in the de�nitions

of Se
tion 2 were all set equal to 1. However, the implementation has been

written so that it fun
tions essentially as if they had been set equal to those

values that render the implementation the most eÆ
ient. For example, the

implementation has been written so that pro
edure CLTEST is also exe
uted

for sites in R nR

�1

during the 
onstru
tion of their Voronoi polyhedra. Doing

this is essentially equivalent to enlarging R

�1

to a region that renders the im-

plementation the most eÆ
ient whi
h in turn is equivalent to setting 
 equal

to that value that produ
es the same e�e
t.
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n set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8

8

3

0.2303 0.2452 0.2285 0.2457 0.2271 0.2275 0.2275 0.2049

9

3

0.2750 0.2770 0.2702 0.2835 0.2691 0.2751 0.2599 0.2524

10

3

0.3057 0.3175 0.2835 0.3177 0.3011 0.3034 0.2973 0.2876

11

3

0.3147 0.3243 0.2953 0.3158 0.3099 0.3098 0.3219 0.3218

12

3

0.3331 0.3347 0.3230 0.3347 0.3624 0.3028 0.3027 0.3262

13

3

0.3540 0.3393 0.3554 0.3558 0.3447 0.3663 0.3243 0.3324

14

3

0.3505 0.3543 0.3537 0.3739 0.3614 0.3904 0.3342 0.3481

15

3

0.3464 0.3569 0.3651 0.3622 0.3523 0.3773 0.3467 0.3592

16

3

0.3483 0.3550 0.3769 0.3636 0.3359 0.3760 0.3479 0.3650

17

3

0.3477 0.3523 0.3787 0.3608 0.3485 0.3736 0.3429 0.3654

18

3

0.3649 0.3569 0.3596 0.3711 0.3530 0.3528 0.3415 0.3650

19

3

0.3462 0.3521 0.3558 0.3586 0.3483 0.3447 0.3509 0.3473

20

3

0.3555 0.3437 0.3524 0.3623 0.3491 0.3378 0.3408 0.3481

21

3

0.3555 0.3544 0.3548 0.3531 0.3540 0.3430 0.3464 0.3480

22

3

0.3601 0.3553 0.3523 0.3447 0.3591 0.3388 0.3456 0.3432

23

3

0.3601 0.3526 0.3560 0.3438 0.3517 0.3297 0.3346 0.3432

24

3

0.3523 0.3466 0.3561 0.3409 0.3425 0.3290 0.3353 0.3442

25

3

0.3470 0.3391 0.3467 0.3346 0.3379 0.3206 0.3282 0.3368

26

3

0.3431 0.3430 0.3447 0.3270 0.3394 0.3105 0.3321 0.3308

27

3

0.3359 0.3428 0.3322 0.3306 0.3361 0.3189 0.3270 0.3263

28

3

0.3316 0.3377 0.3366 0.3225 0.3291 0.3150 0.3210 0.3272

29

3

0.3263 0.3339 0.3179 0.3173 0.3276 0.3116 0.3202 0.3208

30

3

0.3304 0.3224 0.3273 0.3184 0.3235 0.3107 0.3208 0.3220

31

3

0.3082 0.3243 0.3264 0.3153 0.3191 0.3156 0.3177 0.3188

32

3

0.3148 0.3139 0.3079 0.3030 0.3151 0.3259 0.3064 0.3226

33

3

0.2988 0.3300 0.3000 0.3096 0.2982 0.3036 0.3064 0.3065

36

3

0.3060 0.3040 0.3003 0.3102 0.2941 0.3037 0.2981 0.3072

39

3

0.2856 0.2871 0.2904 0.2953 0.2939 0.2908 0.2920 0.2957

42

3

0.2863 0.2813 0.2822 0.2891 0.2842 0.2866 0.2901 0.2774

48

3

0.2740 0.2664 0.2676 0.2759 0.2686 0.2654 0.2667 0.2648

Table 1: Computing time per site.
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n set 1 set 2 set 3 set 4 set 5 set 6 set 7 set 8

8

3

6.4043 6.3301 6.3496 6.3398 6.3789 6.4141 6.4141 6.3555

9

3

6.4595 6.3937 6.4033 6.4719 6.4225 6.4170 6.4115 6.4472

10

3

6.4710 6.4430 6.4610 6.4830 6.4610 6.4810 6.4440 6.5030

11

3

6.4936 6.5177 6.5297 6.5229 6.5289 6.5289 6.5177 6.5177

12

3

6.5758 6.5336 6.5706 6.5336 6.5156 6.5538 6.5538 6.5752

13

3

6.5772 6.5576 6.5544 6.5603 6.5872 6.5284 6.5690 6.5899

14

3

6.6148 6.5911 6.5652 6.6020 6.6148 6.6017 6.5860 6.6323

15

3

6.6216 6.6071 6.5609 6.6406 6.6308 6.6139 6.5961 6.6394

16

3

6.6394 6.5989 6.5972 6.6492 6.6316 6.6265 6.6445 6.6316

17

3

6.6585 6.6237 6.6076 6.6304 6.6381 6.6507 6.6640 6.6332

18

3

6.6408 6.6502 6.6487 6.6476 6.6626 6.6619 6.6493 6.6408

19

3

6.6553 6.6615 6.6545 6.6673 6.6602 6.6620 6.6606 6.6434

20

3

6.6583 6.6700 6.6524 6.6546 6.6621 6.6640 6.6610 6.6574

21

3

6.6622 6.6656 6.6628 6.6754 6.6758 6.6553 6.6634 6.6589

22

3

6.6767 6.6697 6.6595 6.6657 6.6802 6.6828 6.6665 6.6686

23

3

6.6869 6.6815 6.6615 6.6667 6.6763 6.6822 6.6694 6.6734

24

3

6.6811 6.6736 6.6748 6.6763 6.6778 6.6768 6.6782 6.6823

25

3

6.6797 6.6807 6.6799 6.6768 6.6733 6.6825 6.6845 6.6798

26

3

6.6758 6.6912 6.6880 6.6804 6.6912 6.6925 6.6907 6.6838

27

3

6.6815 6.6925 6.6803 6.6843 6.6888 6.6964 6.6901 6.6827

28

3

6.6824 6.6959 6.6893 6.6879 6.6969 6.7047 6.6959 6.6795

29

3

6.6953 6.6996 6.6899 6.6907 6.6975 6.7084 6.6962 6.6835

30

3

6.6991 6.7053 6.6976 6.6893 6.7071 6.7116 6.6984 6.6986

31

3

6.7004 6.7010 6.6961 6.7050 6.7007 6.7160 6.7073 6.6960

32

3

6.6978 6.7031 6.7079 6.7088 6.7041 6.7028 6.7031 6.7047

33

3

6.6955 6.7014 6.7113 6.7142 6.7017 6.7125 6.7148 6.7062

36

3

6.7185 6.7140 6.7090 6.7092 6.7166 6.7114 6.7128 6.7194

39

3

6.7193 6.7171 6.7188 6.7162 6.7144 6.7172 6.7164 6.7165

42

3

6.7160 6.7264 6.7205 6.7218 6.7226 6.7232 6.7219 6.7191

48

3

6.7262 6.7301 6.7221 6.7289 6.7303 6.7274 6.7244 6.7290

Table 2: Number of 0�dimensional fa
es per site.
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